Bioinformatics

Syndicate content
Updated: 10 hours 9 min ago

AnoniMME: bringing anonymity to the Matchmaker Exchange platform for rare disease gene discovery

Wed, 2018-06-27 02:00
Abstract
Summary
Advances in genome sequencing and genomics research are bringing us closer to a new era of personalized medicine, where healthcare can be tailored to the individual’s genetic makeup and to more effective diagnosis and treatment of rare genetic diseases. Much of this progress depends on collaborations and access to data, thus, a number of initiatives have been introduced to support seamless data sharing. Among these, the Global Alliance for Genomics and Health has developed and operates a platform, called Matchmaker Exchange (MME), which allows researchers to perform queries for rare genetic disease discovery over multiple federated databases. Queries include gene variations which are linked to rare diseases, and the ability to find other researchers that have seen or have interest in those variations is extremely valuable. Nonetheless, in some cases, researchers may be reluctant to use the platform since the queries they make (thus, what they are working on) are revealed to other researchers, and this creates concerns with respect to privacy and competitive advantage.In this paper, we present AnoniMME, a framework geared to enable anonymous queries within the MME platform. The framework, building on a cryptographic primitive called Reverse Private Information Retrieval, let researchers anonymously query the federated platform, in a multi-server setting—specifically, they write their query, along with a public encryption key, anonymously in a public database. Responses are also supported, so that other researchers can respond to queries by providing their encrypted contact details.
Availability and implementation
https://github.com/bristena-op/AnoniMME
Categories: Bioinformatics, Journals

A space and time-efficient index for the compacted colored de Bruijn graph

Wed, 2018-06-27 02:00
Abstract
Motivation
Indexing reference sequences for search—both individual genomes and collections of genomes—is an important building block for many sequence analysis tasks. Much work has been dedicated to developing full-text indices for genomic sequences, based on data structures such as the suffix array, the BWT and the FM-index. However, the de Bruijn graph, commonly used for sequence assembly, has recently been gaining attention as an indexing data structure, due to its natural ability to represent multiple references using a graphical structure, and to collapse highly-repetitive sequence regions. Yet, much less attention has been given as to how to best index such a structure, such that queries can be performed efficiently and memory usage remains practical as the size and number of reference sequences being indexed grows large.
Results
We present a novel data structure for representing and indexing the compacted colored de Bruijn graph, which allows for efficient pattern matching and retrieval of the reference information associated with each k-mer. As the popularity of the de Bruijn graph as an index has increased over the past few years, so have the number of proposed representations of this structure. Existing structures typically fall into two categories; those that are hashing-based and provide very fast access to the underlying k-mer information, and those that are space-frugal and provide asymptotically efficient but practically slower pattern search. Our representation achieves a compromise between these two extremes. By building upon minimum perfect hashing and making use of succinct representations where applicable, our data structure provides practically fast lookup while greatly reducing the space compared to traditional hashing-based implementations. Further, we describe a sampling scheme for this index, which provides the ability to trade off query speed for a reduction in the index size. We believe this representation strikes a desirable balance between speed and space usage, and allows for fast search on large reference sequences.Finally, we describe an application of this index to the taxonomic read assignment problem. We show that by adopting, essentially, the approach of Kraken, but replacing k-mer presence with coverage by chains of consistent unique maximal matches, we can improve the space, speed and accuracy of taxonomic read assignment.
Availability and implementation
pufferfish is written in C++11, is open source, and is available at https://github.com/COMBINE-lab/pufferfish.
Supplementary information
Supplementary dataSupplementary data are available at Bioinformatics online.
Categories: Bioinformatics, Journals

Personalized regression enables sample-specific pan-cancer analysis

Wed, 2018-06-27 02:00
Abstract
Motivation
In many applications, inter-sample heterogeneity is crucial to understanding the complex biological processes under study. For example, in genomic analysis of cancers, each patient in a cohort may have a different driver mutation, making it difficult or impossible to identify causal mutations from an averaged view of the entire cohort. Unfortunately, many traditional methods for genomic analysis seek to estimate a single model which is shared by all samples in a population, ignoring this inter-sample heterogeneity entirely. In order to better understand patient heterogeneity, it is necessary to develop practical, personalized statistical models.
Results
To uncover this inter-sample heterogeneity, we propose a novel regularizer for achieving patient-specific personalized estimation. This regularizer operates by learning two latent distance metrics—one between personalized parameters and one between clinical covariates—and attempting to match the induced distances as closely as possible. Crucially, we do not assume these distance metrics are already known. Instead, we allow the data to dictate the structure of these latent distance metrics. Finally, we apply our method to learn patient-specific, interpretable models for a pan-cancer gene expression dataset containing samples from more than 30 distinct cancer types and find strong evidence of personalization effects between cancer types as well as between individuals. Our analysis uncovers sample-specific aberrations that are overlooked by population-level methods, suggesting a promising new path for precision analysis of complex diseases such as cancer.
Availability and implementation
Software for personalized linear and personalized logistic regression, along with code to reproduce experimental results, is freely available at github.com/blengerich/personalized_regression.
Categories: Bioinformatics, Journals

A scalable estimator of SNP heritability for biobank-scale data

Wed, 2018-06-27 02:00
Abstract
Motivation
Heritability, the proportion of variation in a trait that can be explained by genetic variation, is an important parameter in efforts to understand the genetic architecture of complex phenotypes as well as in the design and interpretation of genome-wide association studies. Attempts to understand the heritability of complex phenotypes attributable to genome-wide single nucleotide polymorphism (SNP) variation data has motivated the analysis of large datasets as well as the development of sophisticated tools to estimate heritability in these datasets. Linear mixed models (LMMs) have emerged as a key tool for heritability estimation where the parameters of the LMMs, i.e. the variance components, are related to the heritability attributable to the SNPs analyzed. Likelihood-based inference in LMMs, however, poses serious computational burdens.
Results
We propose a scalable randomized algorithm for estimating variance components in LMMs. Our method is based on a method-of-moment estimator that has a runtime complexity O(NMB) for N individuals and M SNPs (where B is a parameter that controls the number of random matrix-vector multiplications). Further, by leveraging the structure of the genotype matrix, we can reduce the time complexity to O(NMBmax( log⁡3N, log⁡3M)).We demonstrate the scalability and accuracy of our method on simulated as well as on empirical data. On standard hardware, our method computes heritability on a dataset of 500 000 individuals and 100 000 SNPs in 38 min.
Availability and implementation
The RHE-reg software is made freely available to the research community at: https://github.com/sriramlab/RHE-reg.
Categories: Bioinformatics, Journals

A unifying framework for joint trait analysis under a non-infinitesimal model

Wed, 2018-06-27 02:00
Abstract
Motivation
A large proportion of risk regions identified by genome-wide association studies (GWAS) are shared across multiple diseases and traits. Understanding whether this clustering is due to sharing of causal variants or chance colocalization can provide insights into shared etiology of complex traits and diseases.
Results
In this work, we propose a flexible, unifying framework to quantify the overlap between a pair of traits called UNITY (Unifying Non-Infinitesimal Trait analYsis). We formulate a Bayesian generative model that relates the overlap between pairs of traits to GWAS summary statistic data under a non-infinitesimal genetic architecture underlying each trait. We propose a Metropolis–Hastings sampler to compute the posterior density of the genetic overlap parameters in this model. We validate our method through comprehensive simulations and analyze summary statistics from height and body mass index GWAS to show that it produces estimates consistent with the known genetic makeup of both traits.
Availability and implementation
The UNITY software is made freely available to the research community at: https://github.com/bogdanlab/UNITY.
Supplementary information
Supplementary dataSupplementary data are available at Bioinformatics online.
Categories: Bioinformatics, Journals

ISMB 2018 proceedings

Wed, 2018-06-27 02:00
The 26th Annual Conference on Intelligent Systems for Molecular Biology (ISMB) was held in Chicago, Illinois, USA, July 6–10, 2018. ISMB is the flagship conference of the International Society for Computational Biology (ISCB) and the world’s premier forum for dissemination of scientific research in computational biology and its intersection with other fields. This special issue serves as the Proceedings of ISMB 2018.
Categories: Bioinformatics, Journals

AmpUMI: design and analysis of unique molecular identifiers for deep amplicon sequencing

Wed, 2018-06-27 02:00
Abstract
Motivation
Unique molecular identifiers (UMIs) are added to DNA fragments before PCR amplification to discriminate between alleles arising from the same genomic locus and sequencing reads produced by PCR amplification. While computational methods have been developed to take into account UMI information in genome-wide and single-cell sequencing studies, they are not designed for modern amplicon-based sequencing experiments, especially in cases of high allelic diversity. Importantly, no guidelines are provided for the design of optimal UMI length for amplicon-based sequencing experiments.
Results
Based on the total number of DNA fragments and the distribution of allele frequencies, we present a model for the determination of the minimum UMI length required to prevent UMI collisions and reduce allelic distortion. We also introduce a user-friendly software tool called AmpUMI to assist in the design and the analysis of UMI-based amplicon sequencing studies. AmpUMI provides quality control metrics on frequency and quality of UMIs, and trims and deduplicates amplicon sequences with user specified parameters for use in downstream analysis.
Availability and implementation
AmpUMI is open-source and freely available at http://github.com/pinellolab/AmpUMI.
Categories: Bioinformatics, Journals

Haplotype phasing in single-cell DNA-sequencing data

Wed, 2018-06-27 02:00
Abstract
Motivation
Current technologies for single-cell DNA sequencing require whole-genome amplification (WGA), as a single cell contains too little DNA for direct sequencing. Unfortunately, WGA introduces biases in the resulting sequencing data, including non-uniformity in genome coverage and high rates of allele dropout. These biases complicate many downstream analyses, including the detection of genomic variants.
Results
We show that amplification biases have a potential upside: long-range correlations in rates of allele dropout provide a signal for phasing haplotypes at the lengths of amplicons from WGA, lengths which are generally longer than than individual sequence reads. We describe a statistical test to measure concurrent allele dropout between single-nucleotide polymorphisms (SNPs) across multiple sequenced single cells. We use results of this test to perform haplotype assembly across a collection of single cells. We demonstrate that the algorithm predicts phasing between pairs of SNPs with higher accuracy than phasing from reads alone. Using whole-genome sequencing data from only seven neural cells, we obtain haplotype blocks that are orders of magnitude longer than with sequence reads alone (median length 10.2 kb versus 312 bp), with error rates <2%. We demonstrate similar advantages on whole-exome data from 16 cells, where we obtain haplotype blocks with median length 9.2 kb—comparable to typical gene lengths—compared with median lengths of 41 bp with sequence reads alone, with error rates <4%. Our algorithm will be useful for haplotyping of rare alleles and studies of allele-specific somatic aberrations.
Availability and implementation
Source code is available at https://www.github.com/raphael-group.
Supplementary information
Supplementary dataSupplementary data are available at Bioinformatics online.
Categories: Bioinformatics, Journals

Dissecting newly transcribed and old RNA using GRAND-SLAM

Wed, 2018-06-27 02:00
Abstract
Summary
Global quantification of total RNA is used to investigate steady state levels of gene expression. However, being able to differentiate pre-existing RNA (that has been synthesized prior to a defined point in time) and newly transcribed RNA can provide invaluable information e.g. to estimate RNA half-lives or identify fast and complex regulatory processes. Recently, new techniques based on metabolic labeling and RNA-seq have emerged that allow to quantify new and old RNA: Nucleoside analogs are incorporated into newly transcribed RNA and are made detectable as point mutations in mapped reads. However, relatively infrequent incorporation events and significant sequencing error rates make the differentiation between old and new RNA a highly challenging task. We developed a statistical approach termed GRAND-SLAM that, for the first time, allows to estimate the proportion of old and new RNA in such an experiment. Uncertainty in the estimates is quantified in a Bayesian framework. Simulation experiments show our approach to be unbiased and highly accurate. Furthermore, we analyze how uncertainty in the proportion translates into uncertainty in estimating RNA half-lives and give guidelines for planning experiments. Finally, we demonstrate that our estimates of RNA half-lives compare favorably to other experimental approaches and that biological processes affecting RNA half-lives can be investigated with greater power than offered by any other method. GRAND-SLAM is freely available for non-commercial use at http://software.erhard-lab.de; R scripts to generate all figures are available at zenodo (doi: 10.5281/zenodo.1162340).
Categories: Bioinformatics, Journals

An integration of fast alignment and maximum-likelihood methods for electron subtomogram averaging and classification

Wed, 2018-06-27 02:00
Abstract
Motivation
Cellular Electron CryoTomography (CECT) is an emerging 3D imaging technique that visualizes subcellular organization of single cells at sub-molecular resolution and in near-native state. CECT captures large numbers of macromolecular complexes of highly diverse structures and abundances. However, the structural complexity and imaging limits complicate the systematic de novo structural recovery and recognition of these macromolecular complexes. Efficient and accurate reference-free subtomogram averaging and classification represent the most critical tasks for such analysis. Existing subtomogram alignment based methods are prone to the missing wedge effects and low signal-to-noise ratio (SNR). Moreover, existing maximum-likelihood based methods rely on integration operations, which are in principle computationally infeasible for accurate calculation.
Results
Built on existing works, we propose an integrated method, Fast Alignment Maximum Likelihood method (FAML), which uses fast subtomogram alignment to sample sub-optimal rigid transformations. The transformations are then used to approximate integrals for maximum-likelihood update of subtomogram averages through expectation–maximization algorithm. Our tests on simulated and experimental subtomograms showed that, compared to our previously developed fast alignment method (FA), FAML is significantly more robust to noise and missing wedge effects with moderate increases of computation cost. Besides, FAML performs well with significantly fewer input subtomograms when the FA method fails. Therefore, FAML can serve as a key component for improved construction of initial structural models from macromolecules captured by CECT.
Availability and implementation
http://www.cs.cmu.edu/mxu1
Categories: Bioinformatics, Journals

Viral quasispecies reconstruction via tensor factorization with successive read removal

Wed, 2018-06-27 02:00
Abstract
Motivation
As RNA viruses mutate and adapt to environmental changes, often developing resistance to anti-viral vaccines and drugs, they form an ensemble of viral strains––a viral quasispecies. While high-throughput sequencing (HTS) has enabled in-depth studies of viral quasispecies, sequencing errors and limited read lengths render the problem of reconstructing the strains and estimating their spectrum challenging. Inference of viral quasispecies is difficult due to generally non-uniform frequencies of the strains, and is further exacerbated when the genetic distances between the strains are small.
Results
This paper presents TenSQR, an algorithm that utilizes tensor factorization framework to analyze HTS data and reconstruct viral quasispecies characterized by highly uneven frequencies of its components. Fundamentally, TenSQR performs clustering with successive data removal to infer strains in a quasispecies in order from the most to the least abundant one; every time a strain is inferred, sequencing reads generated from that strain are removed from the dataset. The proposed successive strain reconstruction and data removal enables discovery of rare strains in a population and facilitates detection of deletions in such strains. Results on simulated datasets demonstrate that TenSQR can reconstruct full-length strains having widely different abundances, generally outperforming state-of-the-art methods at diversities 1–10% and detecting long deletions even in rare strains. A study on a real HIV-1 dataset demonstrates that TenSQR outperforms competing methods in experimental settings as well. Finally, we apply TenSQR to analyze a Zika virus sample and reconstruct the full-length strains it contains.
Availability and implementation
TenSQR is available at https://github.com/SoYeonA/TenSQR.
Supplementary information
Supplementary dataSupplementary data are available at Bioinformatics online.
Categories: Bioinformatics, Journals

Convolutional neural networks for classification of alignments of non-coding RNA sequences

Wed, 2018-06-27 02:00
Abstract
Motivation
The convolutional neural network (CNN) has been applied to the classification problem of DNA sequences, with the additional purpose of motif discovery. The training of CNNs with distributed representations of four nucleotides has successfully derived position weight matrices on the learned kernels that corresponded to sequence motifs such as protein-binding sites.
Results
We propose a novel application of CNNs to classification of pairwise alignments of sequences for accurate clustering of sequences and show the benefits of the CNN method of inputting pairwise alignments for clustering of non-coding RNA (ncRNA) sequences and for motif discovery. Classification of a pairwise alignment of two sequences into positive and negative classes corresponds to the clustering of the input sequences. After we combined the distributed representation of RNA nucleotides with the secondary-structure information specific to ncRNAs and furthermore with mapping profiles of next-generation sequence reads, the training of CNNs for classification of alignments of RNA sequences yielded accurate clustering in terms of ncRNA families and outperformed the existing clustering methods for ncRNA sequences. Several interesting sequence motifs and secondary-structure motifs known for the snoRNA family and specific to microRNA and tRNA families were identified.
Availability and implementation
The source code of our CNN software in the deep-learning framework Chainer is available at http://www.dna.bio.keio.ac.jp/cnn/, and the dataset used for performance evaluation in this work is available at the same URL.
Categories: Bioinformatics, Journals

DisruPPI: structure-based computational redesign algorithm for protein binding disruption

Wed, 2018-06-27 02:00
Abstract
Motivation
Disruption of protein–protein interactions can mitigate antibody recognition of therapeutic proteins, yield monomeric forms of oligomeric proteins, and elucidate signaling mechanisms, among other applications. While designing affinity-enhancing mutations remains generally quite challenging, both statistically and physically based computational methods can precisely identify affinity-reducing mutations. In order to leverage this ability to design variants of a target protein with disrupted interactions, we developed the DisruPPI protein design method (DISRUpting Protein–Protein Interactions) to optimize combinations of mutations simultaneously for both disruption and stability, so that incorporated disruptive mutations do not inadvertently affect the target protein adversely.
Results
Two existing methods for predicting mutational effects on binding, FoldX and INT5, were demonstrated to be quite precise in selecting disruptive mutations from the SKEMPI and AB-Bind databases of experimentally determined changes in binding free energy. DisruPPI was implemented to use an INT5-based disruption score integrated with an AMBER-based stability assessment and was applied to disrupt protein interactions in a set of different targets representing diverse applications. In retrospective evaluation with three different case studies, comparison of DisruPPI-designed variants to published experimental data showed that DisruPPI was able to identify more diverse interaction-disrupting and stability-preserving variants more efficiently and effectively than previous approaches. In prospective application to an interaction between enhanced green fluorescent protein (EGFP) and a nanobody, DisruPPI was used to design five EGFP variants, all of which were shown to have significantly reduced nanobody binding while maintaining function and thermostability. This demonstrates that DisruPPI may be readily utilized for effective removal of known epitopes of therapeutically relevant proteins.
Availability and implementation
DisruPPI is implemented in the EpiSweep package, freely available under an academic use license.
Supplementary information
Supplementary dataSupplementary data are available at Bioinformatics online.
Categories: Bioinformatics, Journals

DeepFam: deep learning based alignment-free method for protein family modeling and prediction

Wed, 2018-06-27 02:00
Abstract
Motivation
A large number of newly sequenced proteins are generated by the next-generation sequencing technologies and the biochemical function assignment of the proteins is an important task. However, biological experiments are too expensive to characterize such a large number of protein sequences, thus protein function prediction is primarily done by computational modeling methods, such as profile Hidden Markov Model (pHMM) and k-mer based methods. Nevertheless, existing methods have some limitations; k-mer based methods are not accurate enough to assign protein functions and pHMM is not fast enough to handle large number of protein sequences from numerous genome projects. Therefore, a more accurate and faster protein function prediction method is needed.
Results
In this paper, we introduce DeepFam, an alignment-free method that can extract functional information directly from sequences without the need of multiple sequence alignments. In extensive experiments using the Clusters of Orthologous Groups (COGs) and G protein-coupled receptor (GPCR) dataset, DeepFam achieved better performance in terms of accuracy and runtime for predicting functions of proteins compared to the state-of-the-art methods, both alignment-free and alignment-based methods. Additionally, we showed that DeepFam has a power of capturing conserved regions to model protein families. In fact, DeepFam was able to detect conserved regions documented in the Prosite database while predicting functions of proteins. Our deep learning method will be useful in characterizing functions of the ever increasing protein sequences.
Availability and implementation
Codes are available at https://bhi-kimlab.github.io/DeepFam.
Categories: Bioinformatics, Journals

Protein threading using residue co-variation and deep learning

Wed, 2018-06-27 02:00
Abstract
Motivation
Template-based modeling, including homology modeling and protein threading, is a popular method for protein 3D structure prediction. However, alignment generation and template selection for protein sequences without close templates remain very challenging.
Results
We present a new method called DeepThreader to improve protein threading, including both alignment generation and template selection, by making use of deep learning (DL) and residue co-variation information. Our method first employs DL to predict inter-residue distance distribution from residue co-variation and sequential information (e.g. sequence profile and predicted secondary structure), and then builds sequence-template alignment by integrating predicted distance information and sequential features through an ADMM algorithm. Experimental results suggest that predicted inter-residue distance is helpful to both protein alignment and template selection especially for protein sequences without very close templates, and that our method outperforms currently popular homology modeling method HHpred and threading method CNFpred by a large margin and greatly outperforms the latest contact-assisted protein threading method EigenTHREADER.
Availability and implementation
http://raptorx.uchicago.edu/
Supplementary information
Supplementary dataSupplementary data are available at Bioinformatics online.
Categories: Bioinformatics, Journals

mGPfusion: predicting protein stability changes with Gaussian process kernel learning and data fusion

Wed, 2018-06-27 02:00
Abstract
Motivation
Proteins are commonly used by biochemical industry for numerous processes. Refining these proteins’ properties via mutations causes stability effects as well. Accurate computational method to predict how mutations affect protein stability is necessary to facilitate efficient protein design. However, accuracy of predictive models is ultimately constrained by the limited availability of experimental data.
Results
We have developed mGPfusion, a novel Gaussian process (GP) method for predicting protein’s stability changes upon single and multiple mutations. This method complements the limited experimental data with large amounts of molecular simulation data. We introduce a Bayesian data fusion model that re-calibrates the experimental and in silico data sources and then learns a predictive GP model from the combined data. Our protein-specific model requires experimental data only regarding the protein of interest and performs well even with few experimental measurements. The mGPfusion models proteins by contact maps and infers the stability effects caused by mutations with a mixture of graph kernels. Our results show that mGPfusion outperforms state-of-the-art methods in predicting protein stability on a dataset of 15 different proteins and that incorporating molecular simulation data improves the model learning and prediction accuracy.
Availability and implementation
Software implementation and datasets are available at github.com/emmijokinen/mgpfusion.
Supplementary information
Supplementary dataSupplementary data are available at Bioinformatics online.
Categories: Bioinformatics, Journals

DLBI: deep learning guided Bayesian inference for structure reconstruction of super-resolution fluorescence microscopy

Wed, 2018-06-27 02:00
Abstract
Motivation
Super-resolution fluorescence microscopy with a resolution beyond the diffraction limit of light, has become an indispensable tool to directly visualize biological structures in living cells at a nanometer-scale resolution. Despite advances in high-density super-resolution fluorescent techniques, existing methods still have bottlenecks, including extremely long execution time, artificial thinning and thickening of structures, and lack of ability to capture latent structures.
Results
Here, we propose a novel deep learning guided Bayesian inference (DLBI) approach, for the time-series analysis of high-density fluorescent images. Our method combines the strength of deep learning and statistical inference, where deep learning captures the underlying distribution of the fluorophores that are consistent with the observed time-series fluorescent images by exploring local features and correlation along time-axis, and statistical inference further refines the ultrastructure extracted by deep learning and endues physical meaning to the final image. In particular, our method contains three main components. The first one is a simulator that takes a high-resolution image as the input, and simulates time-series low-resolution fluorescent images based on experimentally calibrated parameters, which provides supervised training data to the deep learning model. The second one is a multi-scale deep learning module to capture both spatial information in each input low-resolution image as well as temporal information among the time-series images. And the third one is a Bayesian inference module that takes the image from the deep learning module as the initial localization of fluorophores and removes artifacts by statistical inference. Comprehensive experimental results on both real and simulated datasets demonstrate that our method provides more accurate and realistic local patch and large-field reconstruction than the state-of-the-art method, the 3B analysis, while our method is more than two orders of magnitude faster.
Availability and implementation
The main program is available at https://github.com/lykaust15/DLBI
Supplementary information
Supplementary dataSupplementary data are available at Bioinformatics online.
Categories: Bioinformatics, Journals

A novel methodology on distributed representations of proteins using their interacting ligands

Wed, 2018-06-27 02:00
Abstract
Motivation
The effective representation of proteins is a crucial task that directly affects the performance of many bioinformatics problems. Related proteins usually bind to similar ligands. Chemical characteristics of ligands are known to capture the functional and mechanistic properties of proteins suggesting that a ligand-based approach can be utilized in protein representation. In this study, we propose SMILESVec, a Simplified molecular input line entry system (SMILES)-based method to represent ligands and a novel method to compute similarity of proteins by describing them based on their ligands. The proteins are defined utilizing the word-embeddings of the SMILES strings of their ligands. The performance of the proposed protein description method is evaluated in protein clustering task using TransClust and MCL algorithms. Two other protein representation methods that utilize protein sequence, Basic local alignment tool and ProtVec, and two compound fingerprint-based protein representation methods are compared.
Results
We showed that ligand-based protein representation, which uses only SMILES strings of the ligands that proteins bind to, performs as well as protein sequence-based representation methods in protein clustering. The results suggest that ligand-based protein description can be an alternative to the traditional sequence or structure-based representation of proteins and this novel approach can be applied to different bioinformatics problems such as prediction of new protein–ligand interactions and protein function annotation.
Availability and implementation
https://github.com/hkmztrk/SMILESVecProteinRepresentation
Supplementary information
Supplementary dataSupplementary data are available at Bioinformatics online.
Categories: Bioinformatics, Journals

HFSP: high speed homology-driven function annotation of proteins

Wed, 2018-06-27 02:00
Abstract
Motivation
The rapid drop in sequencing costs has produced many more (predicted) protein sequences than can feasibly be functionally annotated with wet-lab experiments. Thus, many computational methods have been developed for this purpose. Most of these methods employ homology-based inference, approximated via sequence alignments, to transfer functional annotations between proteins. The increase in the number of available sequences, however, has drastically increased the search space, thus significantly slowing down alignment methods.
Results
Here we describe homology-derived functional similarity of proteins (HFSP), a novel computational method that uses results of a high-speed alignment algorithm, MMseqs2, to infer functional similarity of proteins on the basis of their alignment length and sequence identity. We show that our method is accurate (85% precision) and fast (more than 40-fold speed increase over state-of-the-art). HFSP can help correct at least a 16% error in legacy curations, even for a resource of as high quality as Swiss-Prot. These findings suggest HFSP as an ideal resource for large-scale functional annotation efforts.
Supplementary information
Supplementary dataSupplementary data are available at Bioinformatics online.
Categories: Bioinformatics, Journals

Enumerating consistent sub-graphs of directed acyclic graphs: an insight into biomedical ontologies

Wed, 2018-06-27 02:00
Abstract
Motivation
Modern problems of concept annotation associate an object of interest (gene, individual, text document) with a set of interrelated textual descriptors (functions, diseases, topics), often organized in concept hierarchies or ontologies. Most ontology can be seen as directed acyclic graphs (DAGs), where nodes represent concepts and edges represent relational ties between these concepts. Given an ontology graph, each object can only be annotated by a consistent sub-graph; that is, a sub-graph such that if an object is annotated by a particular concept, it must also be annotated by all other concepts that generalize it. Ontologies therefore provide a compact representation of a large space of possible consistent sub-graphs; however, until now we have not been aware of a practical algorithm that can enumerate such annotation spaces for a given ontology.
Results
We propose an algorithm for enumerating consistent sub-graphs of DAGs. The algorithm recursively partitions the graph into strictly smaller graphs until the resulting graph becomes a rooted tree (forest), for which a linear-time solution is computed. It then combines the tallies from graphs created in the recursion to obtain the final count. We prove the correctness of this algorithm, propose several practical accelerations, evaluate it on random graphs and then apply it to characterize four major biomedical ontologies. We believe this work provides valuable insights into the complexity of concept annotation spaces and its potential influence on the predictability of ontological annotation.
Availability and implementation
https://github.com/shawn-peng/counting-consistent-sub-DAG
Supplementary information
Supplementary dataSupplementary data are available at Bioinformatics online.
Categories: Bioinformatics, Journals