Nucleic Acids Research

Syndicate content
RSS feed of recent issues (covers the latest 3 issues, including the current issue)>
Updated: 3 hours 11 min ago

Imaging HIV-1 RNA dimerization in cells by multicolor super-resolution and fluctuation microscopies

Mon, 2016-09-19 08:02

Dimerization is a unique and vital characteristic of retroviral genomes. It is commonly accepted that genomic RNA (gRNA) must be dimeric at the plasma membrane of the infected cells to be packaged during virus assembly. However, where, when and how HIV-1 gRNA find each other and dimerize in the cell are long-standing questions that cannot be answered using conventional approaches. Here, we combine two state-of-the-art, multicolor RNA labeling strategies with two single-molecule microscopy technologies to address these questions. We used 3D-super-resolution structured illumination microscopy to analyze and quantify the spatial gRNA association throughout the cell and monitored the dynamics of RNA-RNA complexes in living-cells by cross-correlation fluctuation analysis. These sensitive and complementary approaches, combined with trans-complementation experiments, reveal for the first time the presence of interacting gRNA in the cytosol, a challenging observation due to the low frequency of these events and their dilution among the bulk of other RNAs, and allow the determination of the subcellular orchestration of the HIV-1 dimerization process.

Complementary-addressed site-directed spin labeling of long natural RNAs

Mon, 2016-09-19 08:02

Nanoscale distance measurements by pulse dipolar Electron paramagnetic resonance (EPR) spectroscopy allow new insights into the structure and dynamics of complex biopolymers. EPR detection requires site directed spin labeling (SDSL) of biomolecule(s), which remained challenging for long RNAs up-to-date. Here, we demonstrate that novel complementary-addressed SDSL approach allows efficient spin labeling and following structural EPR studies of long RNAs. We succeeded to spin-label Hepatitis C Virus RNA internal ribosome entry site consisting of 330 nucleotides and having a complicated spatial structure. Application of pulsed double electron–electron resonance provided spin–spin distance distribution, which agrees well with the results of molecular dynamics (MD) calculations. Thus, novel SDSL approach in conjunction with EPR and MD allows structural studies of long natural RNAs with nanometer resolution and can be applied to systems of biological and biomedical significance.

Mechanism of endonuclease cleavage by the HigB toxin

Mon, 2016-09-19 08:02

Bacteria encode multiple type II toxin–antitoxin modules that cleave ribosome-bound mRNAs in response to stress. All ribosome-dependent toxin family members structurally characterized to date adopt similar microbial RNase architectures despite possessing low sequence identities. Therefore, determining which residues are catalytically important in this specialized RNase family has been a challenge in the field. Structural studies of RelE and YoeB toxins bound to the ribosome provided significant insights but biochemical experiments with RelE were required to clearly demonstrate which residues are critical for acid-base catalysis of mRNA cleavage. Here, we solved an X-ray crystal structure of the wild-type, ribosome-dependent toxin HigB bound to the ribosome revealing potential catalytic residues proximal to the mRNA substrate. Using cell-based and biochemical assays, we further determined that HigB residues His54, Asp90, Tyr91 and His92 are critical for activity in vivo, while HigB H54A and Y91A variants have the largest effect on mRNA cleavage in vitro. Comparison of X-ray crystal structures of two catalytically inactive HigB variants with 70S-HigB bound structures reveal that HigB active site residues undergo conformational rearrangements likely required for recognition of its mRNA substrate. These data support the emerging concept that ribosome-dependent toxins have diverse modes of mRNA recognition.

An AT-barrier mechanically controls DNA reannealing under tension

Mon, 2016-09-19 08:02

Regulation of genomic activity occurs through the manipulation of DNA by competent mechanoenzymes. Force-clamp optical tweezers that allow the structural dynamics of the DNA molecule to be measured were used here to investigate the kinetics of mechanically-driven strand reannealing. When the force on the torsionally unconstrained -phage DNA is decreased stepwise from above to below the overstretching transition, reannealing occurs via discrete shortening steps separated by exponentially distributed time intervals. Kinetic analysis reveals a transition barrier 0.58 nm along the reaction coordinate and an average reannealing-step size of ~750 bp, consistent with the average bp interval separating segments of more than 10 consecutive AT bases. In an AT-rich DNA construct, in which the distance between segments of more than 10 consecutive AT is reduced to ~210 bps, the reannealing step reduces accordingly without changes in the position of the transition barrier. Thus, the transition barrier for reannealing is determined by the presence of segments of more than 10 consecutive AT bps independent of changes in sequence composition, while the length of the reannealing strand changes according to the distance between poly-AT segments at least 10 bps long.

A structural analysis of DNA binding by hSSB1 (NABP2/OBFC2B) in solution

Mon, 2016-09-19 08:02

Single-stranded DNA binding proteins (SSBs) play an important role in DNA processing events such as replication, recombination and repair. Human single-stranded DNA binding protein 1 (hSSB1/NABP2/OBFC2B) contains a single oligosaccharide/oligonucleotide binding (OB) domain followed by a charged C-terminus and is structurally homologous to the SSB from the hyperthermophilic crenarchaeote Sulfolobus solfataricus. Recent work has revealed that hSSB1 is critical to homologous recombination and numerous other important biological processes such as the regulation of telomeres, the maintenance of DNA replication forks and oxidative damage repair. Since the ability of hSSB1 to directly interact with single-stranded DNA (ssDNA) is paramount for all of these processes, understanding the molecular details of ssDNA recognition is essential. In this study, we have used solution-state nuclear magnetic resonance in combination with biophysical and functional experiments to structurally analyse ssDNA binding by hSSB1. We reveal that ssDNA recognition in solution is modulated by base-stacking of four key aromatic residues within the OB domain. This DNA binding mode differs significantly from the recently determined crystal structure of the SOSS1 complex containing hSSB1 and ssDNA. Our findings elucidate the detailed molecular mechanism in solution of ssDNA binding by hSSB1, a major player in the maintenance of genomic stability.

Visualizing the phage T4 activated transcription complex of DNA and E. coli RNA polymerase

Mon, 2016-09-19 08:02

The ability of RNA polymerase (RNAP) to select the right promoter sequence at the right time is fundamental to the control of gene expression in all organisms. However, there is only one crystallized structure of a complete activator/RNAP/DNA complex. In a process called appropriation, bacteriophage T4 activates a class of phage promoters using an activator (MotA) and a co-activator (AsiA), which function through interactions with the 70 subunit of RNAP. We have developed a holistic, structure-based model for appropriation using multiple experimentally determined 3D structures (Escherichia coli RNAP, the Thermus aquaticus RNAP/DNA complex, AsiA /70 Region 4, the N-terminal domain of MotA [MotANTD], and the C-terminal domain of MotA [MotACTD]), molecular modeling, and extensive biochemical observations indicating the position of the proteins relative to each other and to the DNA. Our results visualize how AsiA/MotA redirects , and therefore RNAP activity, to T4 promoter DNA, and demonstrate at a molecular level how the tactful interaction of transcriptional factors with even small segments of RNAP can alter promoter specificity. Furthermore, our model provides a rational basis for understanding how a mutation within the β subunit of RNAP (G1249D), which is far removed from AsiA or MotA, impairs appropriation.

Self-assembly of fully addressable DNA nanostructures from double crossover tiles

Mon, 2016-09-19 08:02

DNA origami and single-stranded tile (SST) are two proven approaches to self-assemble finite-size complex DNA nanostructures. The construction elements appeared in structures from these two methods can also be found in multi-stranded DNA tiles such as double crossover tiles. Here we report the design and observation of four types of finite-size lattices with four different double crossover tiles, respectively, which, we believe, in terms of both complexity and robustness, will be rival to DNA origami and SST structures.

Co-incident insertion enables high efficiency genome engineering in mouse embryonic stem cells

Mon, 2016-09-19 08:02

CRISPR/Cas9 nucleases have enabled powerful, new genome editing capabilities; however, the preponderance of non-homologous end joining (NHEJ) mediated repair events over homology directed repair (HDR) in most cell types limits the ability to engineer precise changes in mammalian genomes. Here, we increase the efficiency of isolating precise HDR-mediated events in mouse embryonic stem (ES) cells by more than 20-fold through the use of co-incidental insertion (COIN) of independent donor DNA sequences. Analysis of on:off-target frequencies at the Lef1 gene revealed that bi-allelic insertion of a PGK-Neo cassette occurred more frequently than expected. Using various selection cassettes targeting multiple loci, we show that the insertion of a selectable marker at one control site frequently coincided with an insertion at an unlinked, independently targeted site, suggesting enrichment of a sub-population of HDR-proficient cells. When individual cell events were tracked using flow cytometry and fluorescent protein markers, individual cells frequently performed either a homology-dependent insertion event or a homology-independent event, but rarely both types of insertions in a single cell. Thus, when HDR-dependent selection donors are used, COIN enriches for HDR-proficient cells among heterogeneous cell populations. When combined with a self-excising selection cassette, COIN provides highly efficient and scarless genome editing.

Subscriptions

Mon, 2016-09-19 08:02

mRNA capping: biological functions and applications

Mon, 2016-09-19 08:02

The 5' m7G cap is an evolutionarily conserved modification of eukaryotic mRNA. Decades of research have established that the m7G cap serves as a unique molecular module that recruits cellular proteins and mediates cap-related biological functions such as pre-mRNA processing, nuclear export and cap-dependent protein synthesis. Only recently has the role of the cap 2'O methylation as an identifier of self RNA in the innate immune system against foreign RNA has become clear. The discovery of the cytoplasmic capping machinery suggests a novel level of control network. These new findings underscore the importance of a proper cap structure in the synthesis of functional messenger RNA. In this review, we will summarize the current knowledge of the biological roles of mRNA caps in eukaryotic cells. We will also discuss different means that viruses and their host cells use to cap their RNA and the application of these capping machineries to synthesize functional mRNA. Novel applications of RNA capping enzymes in the discovery of new RNA species and sequencing the microbiome transcriptome will also be discussed. We will end with a summary of novel findings in RNA capping and the questions these findings pose.

Cracking the control of RNA polymerase II elongation by 7SK snRNP and P-TEFb

Mon, 2016-09-19 08:02

Release of RNA polymerase II (Pol II) from promoter-proximal pausing has emerged as a critical step regulating gene expression in multicellular organisms. The transition of Pol II into productive elongation requires the kinase activity of positive transcription elongation factor b (P-TEFb), which is itself under a stringent control by the inhibitory 7SK small nuclear ribonucleoprotein (7SK snRNP) complex. Here, we provide an overview on stimulating Pol II pause release by P-TEFb and on sequestering P-TEFb into 7SK snRNP. Furthermore, we highlight mechanisms that govern anchoring of 7SK snRNP to chromatin as well as means that release P-TEFb from the inhibitory complex, and propose a unifying model of P-TEFb activation on chromatin. Collectively, these studies shine a spotlight on the central role of RNA binding proteins (RBPs) in directing the inhibition and activation of P-TEFb, providing a compelling paradigm for controlling Pol II transcription with a non-coding RNA.

Genome-wide analysis reveals positional-nucleosome-oriented binding pattern of pioneer factor FOXA1

Mon, 2016-09-19 08:02

The compaction of nucleosomal structures creates a barrier for DNA-binding transcription factors (TFs) to access their cognate cis-regulatory elements. Pioneer factors (PFs) such as FOXA1 are able to directly access these cis-targets within compact chromatin. However, how these PFs interplay with nucleosomes remains to be elucidated, and is critical for us to understand the underlying mechanism of gene regulation. Here, we have conducted a computational analysis on a strand-specific paired-end ChIP-exo (termed as ChIP-ePENS) data of FOXA1 in LNCaP cells by our novel algorithm ePEST. We find that FOXA1 chromatin binding occurs via four distinct border modes (or footprint boundary patterns), with a preferential footprint boundary patterns relative to FOXA1 motif orientation. In addition, from this analysis three fundamental nucleotide positions (oG, oS and oH) emerged as major determinants for blocking exo-digestion and forming these four distinct border modes. By integrating histone MNase-seq data, we found an astonishingly consistent, ‘well-positioned’ configuration occurs between FOXA1 motifs and dyads of nucleosomes genome-wide. We further performed ChIP-seq of eight chromatin remodelers and found an increased occupancy of these remodelers on FOXA1 motifs for all four border modes (or footprint boundary patterns), indicating the full occupancy of FOXA1 complex on the three blocking sites (oG, oS and oH) likely produces an active regulatory status with well-positioned phasing for protein binding events. Together, our results suggest a positional-nucleosome-oriented accessing model for PFs seeking target motifs, in which FOXA1 can examine each underlying DNA nucleotide and is able to sense all potential motifs regardless of whether they face inward or outward from histone octamers along the DNA helix axis.

Musashi mediates translational repression of the Drosophila hypoxia inducible factor

Mon, 2016-09-19 08:02

Adaptation to hypoxia depends on a conserved α/β heterodimeric transcription factor called Hypoxia Inducible Factor (HIF), whose α-subunit is regulated by oxygen through different concurrent mechanisms. In this study, we have identified the RNA binding protein dMusashi, as a negative regulator of the fly HIF homologue Sima. Genetic interaction assays suggested that dMusashi participates of the HIF pathway, and molecular studies carried out in Drosophila cell cultures showed that dMusashi recognizes a Musashi Binding Element in the 3' UTR of the HIFα transcript, thereby mediating its translational repression in normoxia. In hypoxic conditions dMusashi is downregulated, lifting HIFα repression and contributing to trigger HIF-dependent gene expression. Analysis performed in mouse brains revealed that murine Msi1 protein physically interacts with HIF-1α transcript, suggesting that the regulation of HIF by Msi might be conserved in mammalian systems. Thus, Musashi is a novel regulator of HIF that inhibits responses to hypoxia specifically when oxygen is available.

Synergistic activation of Arg1 gene by retinoic acid and IL-4 involves chromatin remodeling for transcription initiation and elongation coupling

Mon, 2016-09-19 08:02

All-trans Retinoic acid (RA) and its derivatives are potent therapeutics for immunological functions including wound repair. However, the molecular mechanism of RA modulation in innate immunity is poorly understood, especially in macrophages. We found that topical application of RA significantly improves wound healing and that RA and IL-4 synergistically activate Arg1, a critical gene for tissue repair, in M2 polarized macrophages. This involves feed forward regulation of Raldh2, a rate-limiting enzyme for RA biosynthesis, and requires Med25 to coordinate RAR, STAT6 and chromatin remodeler, Brg1 to remodel the +1 nucleosome of Arg1 for transcription initiation. By recruiting elongation factor TFIIS, Med25 also facilitates transcriptional initiation-elongation coupling. This study uncovers synergistic activation of Arg1 by RA and IL-4 in M2 macrophages that involves feed forward regulation of RA synthesis and dual functions of Med25 in nucleosome remodeling and transcription initiation-elongation coupling that underlies robust modulatory activity of RA in innate immunity.

The Chd1 chromatin remodeler can sense both entry and exit sides of the nucleosome

Mon, 2016-09-19 08:02

Chromatin remodelers are essential for establishing and maintaining the placement of nucleosomes along genomic DNA. Yet how chromatin remodelers recognize and respond to distinct chromatin environments surrounding nucleosomes is poorly understood. Here, we use Lac repressor as a tool to probe how a DNA-bound factor influences action of the Chd1 remodeler. We show that Chd1 preferentially shifts nucleosomes away from Lac repressor, demonstrating that a DNA-bound factor defines a barrier for nucleosome positioning. Rather than an absolute block in sliding, the barrier effect was achieved by altered rates of nucleosome sliding that biased redistribution of nucleosomes away from the bound Lac repressor site. Remarkably, in addition to slower sliding toward the LacO site, the presence of Lac repressor also stimulated sliding in the opposite direction. These experiments therefore demonstrate that Chd1 responds to the presence of a bound protein on both entry and exit sides of the nucleosome. This sensitivity to both sides of the nucleosome allows for a faster and sharper response than would be possible by responding to only the entry side, and we speculate that dual entry/exit sensitivity is also important for regularly spaced nucleosome arrays generated by Chd1 and the related ISWI remodelers.

The SNF2 family ATPase LSH promotes cell-autonomous de novo DNA methylation in somatic cells

Mon, 2016-09-19 08:02

Methylation of DNA at carbon 5 of cytosine is essential for mammalian development and implicated in transcriptional repression of genes and transposons. New patterns of DNA methylation characteristic of lineage-committed cells are established at the exit from pluripotency by de novo DNA methyltransferases enzymes, DNMT3A and DNMT3B, which are regulated by developmental signaling and require access to chromatin-organized DNA. Whether or not the capacity for de novo DNA methylation of developmentally regulated loci is preserved in differentiated somatic cells and can occur in the absence of exogenous signals is currently unknown. Here, we demonstrate that fibroblasts derived from chromatin remodeling ATPase LSH (HELLS)-null mouse embryos, which lack DNA methylation from centromeric repeats, transposons and a number of gene promoters, are capable of reestablishing DNA methylation and silencing of misregulated genes upon re-expression of LSH. We also show that the ability of LSH to bind ATP and the cellular concentration of DNMT3B are critical for cell-autonomous de novo DNA methylation in somatic cells. These data suggest the existence of cellular memory that persists in differentiated cells through many cell generations and changes in transcriptional state.

An epigenetic switch regulates de novo DNA methylation at a subset of pluripotency gene enhancers during embryonic stem cell differentiation

Mon, 2016-09-19 08:02

Coordinated regulation of gene expression that involves activation of lineage specific genes and repression of pluripotency genes drives differentiation of embryonic stem cells (ESC). For complete repression of pluripotency genes during ESC differentiation, chromatin at their enhancers is silenced by the activity of the Lsd1-Mi2/NuRD complex. The mechanism/s that regulate DNA methylation at these enhancers are largely unknown. Here, we investigated the affect of the Lsd1-Mi2/NuRD complex on the dynamic regulatory switch that induces the local interaction of histone tails with the Dnmt3 ATRX-DNMT3-DNMT3L (ADD) domain, thus promoting DNA methylation at the enhancers of a subset of pluripotency genes. This is supported by previous structural studies showing a specific interaction between Dnmt3-ADD domain with H3K4 unmethylated histone tails that is disrupted by histone H3K4 methylation and histone acetylation. Our data suggest that Dnmt3a activity is triggered by Lsd1-Mi2/NuRD-mediated histone deacetylation and demethylation at these pluripotency gene enhancers when they are inactivated during mouse ESC differentiation. Using Dnmt3 knockout ESCs and the inhibitors of Lsd1 and p300 histone modifying enzymes during differentiation of E14Tg2A and ZHBTc4 ESCs, our study systematically reveals this mechanism and establishes that Dnmt3a is both reader and effector of the epigenetic state at these target sites.